
Q1. Consider the following scheme of reactions.

(a) Give the IUPAC name for compound **P** and that for compound **Q**.

P

Q

(b) The conversion of ${\bf P}$ into ${\bf Q}$ in Reaction 1 uses HCl

Name and outline a mechanism for this reaction.

(5)

(2)

(5)

(c) The conversion of \boldsymbol{Q} into \boldsymbol{R} in Reaction 2 uses NH_3

Name and outline a mechanism for this reaction.

(d) State the type of reaction shown by Reaction 3.Identify a reagent for this reaction.

	Give one condition necessary for a high yield of product when Q is converted into P .	
		(3)
		(3)
(e)	Hydrogen bromide (HBr) could be used in the overall conversion of P into R , instead of using HCl	
	Hydrogen bromide is made by the reaction of NaBr with concentrated phosphoric acid.	
	Concentrated sulfuric acid is not used to make HBr from NaBr	
	Write an equation for the reaction of NaBr with H_3PO_4 to produce HBr and Na_3PO_4 only.	
	Identify \textbf{two} toxic gases that are formed, together with HBr, when NaBr reacts with concentrated H_2SO_4	
	State the role of H ₂ SO ₄ in the formation of these two toxic gases.	
	(Total 19 ma	(4) irks)

- **Q2.**In each of the following questions, you should draw the structure of the compound in the space provided.
 - (a) Draw the structure of the alkene that would form 1,2-dibromo-3-methylbutane when reacted with bromine.

(b) Draw the structure of the alcohol with molecular formula C₄H₁₀O that is resistant to oxidation by acidified potassium dichromate(VI).

(1)

(c) Draw the structure of the alkene that has a peak, due to its molecular ion, at m/z = 42 in its mass spectrum.

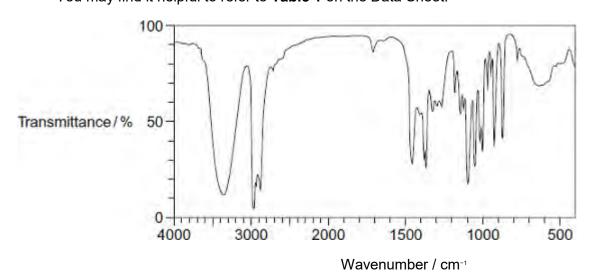
(1)

(d) Draw the structure of the organic product with $M_r = 73$, made from the reaction between 2-bromobutane and ammonia.

(1) (Total 4 marks)

Q3.Haloalkanes are used in the synthesis of other organic compounds.

- (a) Hot concentrated ethanolic potassium hydroxide reacts with 2-bromo-3-methylbutane to form two alkenes that are structural isomers of each other. The major product is 2-methylbut-2-ene.
 - (i) Name and outline a mechanism for the conversion of 2-bromo-3-methylbutane into 2-methylbut-2-ene according to the equation.

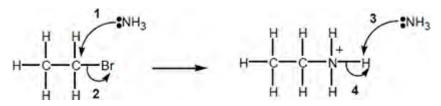

		$(CH_3)_2CHCHBrCH_3 + KOH \longrightarrow (CH_3)_2C=CHCH_3 + KBr + H_2O$		
		Name of mechanism		
		Mechanism		
			(4)	
	(ii)	Draw the displayed formula for the other isomer that is formed.		
			(4)	
			(1)	
	(iii)	State the type of structural isomerism shown by these two alkenes.		
			(4)	
			(1)	
(b)	A small amount of another organic compound, X , can be detected in the reaction mixture formed when hot concentrated ethanolic potassium hydroxide reacts with			
	2-br	pound X has the molecular formula $C_5H_{12}O$ and is a secondary alcohol.		
	(i)	Draw the displayed formula for X .		
	(1)	Draw the displayed formula for X.	(1)	
	(ii)	Suggest one change to the reaction conditions that would increase the yield of		
	()	X.		

(1)

(iii) State the type of mechanism for the conversion of 2-bromo-3-methylbutane into **X**.

.....

(iv) Identify one feature of this infrared spectrum of a pure sample of X that may be used to confirm that X is an alcohol.
 You may find it helpful to refer to Table 1 on the Data Sheet.



Feature

(1) (Total 10 marks)

Q4.This question is about a method that can be used to prepare ethylamine.

$$CH_3CH_2Br \ + \ 2NH_3 \ \longrightarrow \ CH_3CH_2NH_2 \ + \ NH_4Br$$

Which statement about the reaction is **not** correct?

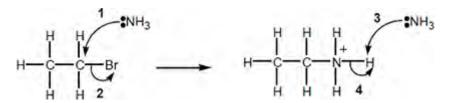
A Ethylamine is a primary amine.

- 0
- **B** The mechanism is a nucleophilic substitution.
- 0
- **C** Using an excess of bromoethane will prevent further reaction to form a mixture of amine products.
- 0

0

D Ammonium bromide is an ionic compound.

(Total 1 mark)

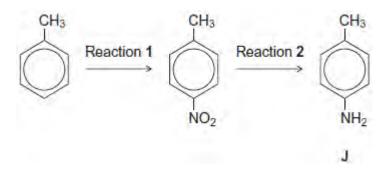

Q5.Why are fluoroalkanes unreactive?

- A Fluorine is highly electronegative.
- B The F⁻ ion is very stable.
- C They are polar molecules.
- **D** The C–F bond is very strong.

(Total 1 mark)

Q6.This question is about a method that can be used to prepare ethylamine.

$$CH_3CH_2Br + 2NH_3 \longrightarrow CH_3CH_2NH_2 + NH_4Br$$



Which of the curly arrows in the mechanism is **not** correct?

- **A** 1
- **B** 2
- **c** 3
- D 4

(1)

Q7.Consider the following reaction sequence starting from methylbenzene.

(a)	Name the type of mechanism for reaction 1.	
		(1)

- (b) Compound **J** is formed by reduction in reaction **2**.
 - (i) Give a reducing agent for this reaction.

(1)

- (ii) Write an equation for this reaction. Use [H] to represent the reducing agent.

 (1)
- (iii) Give a use for **J**.
- Outline a mechanism for the reaction of bromomethane with an excess of compound J.
 You should represent J as RNH₂ in the mechanism.

(d)	Compound K (C ₆ H ₅ CH ₂ NH ₂) is a structural isomer of J .	
	Explain why J is a weaker base than K .	
		 (3) (Total 11 marks)

(4)